HE P L KEF

The Chinese University of Hong Kong

CSCI5550 Advanced File and Storage Systems
Programming Assignment 02:

In-Storage File System (ISFS)
using FUSE

* |ISFS Introduction
— From IMFS to ISFS
— Overall Structure of ISFS
* Direct I/O to USB drive
— Mount a USB drive in Virtual Machine
— Direct I/O to USB drive
« Buffer Cache
— A simple buffer cache design & architecture
— Eviction policy: LRU
— Buffer Cache Optimization
— Dirty Blocks Writeback
« Grading for Programming Assignment 2
— Basic Part (50%) + Advanced Part (50%)
— Bonus (10%)

CSCI5550 Proj02: ISFS using FUSE 2

* For IMFS, all structures (Superblock, Bitmaps, Inode
Table, and Data Region) are stored in the memory.

* For ISFS, you are required to persist those structures
Into the storage (e.qg., a USB flash drive).
— Direct 1/O will be used for data read/write.

— You will implement a Buffer Cache to reduce #reads/writes
to the storage.

CSCI5550 Proj02: ISFS using FUSE 3

Overall structure of ISFS

In-Storage Filesystem For ease of implementation, the
Buffer Cache is implemented in
the units of block size (512 B)
Userspace Buffer Cache instead of page size (4 KB).

Kernel VFS

_ Direct 1/O We use direct 1/O to bypass the

Direct i kernel filesystem and the
/O ! page cache maintained by
' kernel.

Block Device

ox0
CSCI5550 Proj02: ISFS using FUSE 4

e Direct I/O to USB drive
— Mount a USB drive in Virtual Machine
— Direct I/O to USB drive

CSCI5550 Proj02: ISFS using FUSE 5

Mount a USB drive in Virtual Machine

Take VlrtuaIBox as an example

s FUSE | '3 VM Virtualts .

i USB Settings

intel Corp, (0010}

Pa

f

13

“ Shared Folders USE Disk 2.0 {02004
@ | Shared Cipboar ’

sting@sting-VirtualBox:~$ 1sblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdb 116 1 14.9G disk
L-sdb1 1 14.9G part
sro 1 82.3M rom /media/sting/VBox GAs 6.0.6
0 50G disk
0 1K part
(0]

975M part [SWAP]

.: 0 49G part /
sting@sting-virtualBox:~$ |

CSCI5550 Proj02: ISFS using FUSE 6

* Direct I/O can support that file reads/writes directly from
the applications to the storage, bypassing the filesystem
cache.

— Redundant optimization if we have userspace buffer cache & OS

page cache!

* An application invokes direct I/O by opening a file with the
O_DIRECT flag. In our case, the file is the USB drive.

 When a file is opened with O_DIRECT:

— Assume the smallest unit of access called sector size.
— All I/O size must occur in the multiplies of sector size.

— The memory being read from or written to must also be sector-
byte alighed.

CSCI5550 Proj02: ISFS using FUSE 7

Direct 1/O Example

int fd, ret;
unsigned char* buf;

ret = poslix memalign((void*¥*) &buf, , slize);
fd = open("/dev/=sdbl"”, O RDONLY | O DIRECT) ;
1f (£fd < U){
perror ("open /dev/sdbl failed");
exit(l) ;
} Transfer%ed bymS/ﬁtart reading from this byte offset

ret = pread(fd, buf, size, U);

1. Since we are using direct I/0O to USB drive, the transferred
bytes and offset must be in the multiplies of 512 bytes &
allocated memory space must be aligned on a 512-byte.

2. Therefore, posix_memalign is required to allocate aligned
memory space for USB direct I/O.

3. The magic number is not always 512 bytes. It depends on
the sector size of the underlying block device.

CSCI5550 Proj02: ISFS using FUSE 8

$finclude <unistd.h>
finclude <assert.h>

unsigned int num read requests = 0;
unsigned int num write requests = 0;
size t block size = 512; // (bytes)

vold 1o read(int fd, wvoid* buf, int index)
{
off t offset = index * block size;
ssize t read bytes = pread(fd, buf, |[block size| |offset);
assert (read bytes==block size);
num read requests++;

}

vold 1o write(int fd, void¥* buf, int index)
{
off t offset = index * block size;
ssize T write bytes = pwrite(fd, buf, |[block size| |offset)
assert (write bytes==block size);
num write requests++;

e

CSCI5550 Proj02: ISFS using FUSE 9

int f£d, ret;
unsigned char *buf;
ret = posix memalign((void**) &buf, block size, 517);

fd = open("/dev/=sdbl", O RDONLY | O DIRECT):;
if (£fd < 0){

| perror ("open /dev/sdbl failed");

| exit () ;

}

io read(fd, buf, which 1i1dx);

\

It is compulsory to call io_read (io_write) when accessing USB data.
You cannot call pread (pwrite) or modify my _io.h by yourself!

CSCI5550 Proj02: ISFS using FUSE 10

« Buffer Cache
— A simple buffer cache design & architecture
— Eviction policy: LRU
— Buffer Cache Optimization
— Dirty Blocks Writeback

CSCI5550 Proj02: ISFS using FUSE 11

Buffer Cache Design

* To minimize the frequency of disk access, the kernel keeps
a buffer to store the recently accessed files.
— This buffer is called the page cache.
— Page cache is a part of main memory which contains different

pages of data from storage.

* |n our scenario, “Buffer Cache” works in similar idea as
page cache. However, we manage “Buffer Cache” in the
units of blocks (512B) for ease of implementation.

Every requests from

In-Storage Filesystem ISFS will go to Buffer

‘ Cache first.

Buffer Cache
Userspace

Kernel

CSCI5550 Proj02: ISFS using FUSE 12

Buffer Cache: Access Mechanism

* Every I/O request from ISFS will go to Buffer Cache first.

— If the requested data can be found in the Buffer Cache,
directly accessing the data in the Buffer Cache.

— If the requested data cannot be found:

« ® Choosing an empty block or Evicting a block from the
Buffer Cache;

@ Then, using Direct I/O to read the requested block
and keeping the requested block in the Buffer Cache.

Block g -
List

Search all blocks to check the
requested block is present or not

-1 — -1

CSCI5550 Proj02: ISFS using FUSE 13

« Least recently used (LRU): Discard the least
recently used block first.

Most recently used

Block

Least
recently used

100

CSCI5550 Proj02: ISFS using FUSE 14

* The search time to find out a particular block could be
quite high if only a single LRU list is used.

— The worst case will be n times, where n is the number of
blocks in Buffer Cache.

* There are many ways to optimize the search time,
e.g., hash, tree, etc.

* How to optimize the search time of buffer cache while
maintaining the LRU eviction policy?

CSCI5550 Proj02: ISFS using FUSE 15

 When we perform a write request with Buffer Cache:
— The write(s) won't directly go to the storage.

— Instead, the block of memory is modified. The modified
block is called “dirty”.

 When a block of memory is to be replaced, we need to
check whether the block is dirty or not.

— Dirty Block = Write the block back to the storage before being
replaced.

— Not Dirty Block = Simply replace the block.

« What if the filesystem un-mounts?

— To maintain consistency, ISFS must write the dirty block(s) back
to the storage after un-mounting.

CSCI5550 Proj02: ISFS using FUSE 16

char* buf cache head;
char* buf cache tail;

struct block info({

int block 1id;

bool dirty;

block info* next block info;

block info* prev block info;

char* block ptr; // point to the allocated memory address

}:
block info block[SIZE BUF CACHE];

Most recently used

v

Block Least
List e 2 20 recently used

Q0
\ 4

Array of L
blocks

CSCI5550 Proj02: ISFS using FUSE 17

« Grading for Programming Assignment 2
— Basic Part (50%) + Advanced Part (50%)
— Bonus (10%)

CSCI5550 Proj02: ISFS using FUSE 18

* Persisting both metadata and file data into a USB drive.
— [H] Using the provided 1/O interface (my _io.h)
— [H] The file data can still be accessed after re-mounting ISFS
— [25%] The support of cd, Is, mkdir, touch, echo “string” >> file,

cat, rmdir, rm
— [25%)] The support of “big file” and “big directory”

» To test the support of “big file”, a “big file” will be copied from
kernel FS to ISFS and then copied back.

» To test the support of “big directory”, a shell script will be used
to create a large number of files & directories.

* Notel: Fail to support [H] requirements will get O points in this part.
* Note2: Modifying the code in my _io.h is prohibited.
* Note3: Don’t need to support hard link & soft link in the ISFS.

CSCI5550 Proj02: ISFS using FUSE 19

* You are required to build a Buffer Cache to minimize
the number of accesses to the storage (USB drive).

— [35%] Correctness of Buffer Cache:
1. Implement LRU eviction policy

2. Consistency maintenance: dirty blocks writeback when un-
mounting (Ctrl+C) ISFS

3. USB access minimization: show the numbers of reads/writes are
reduced after using Buffer Cache.

— [15%] Buffer Cache Optimization:
1. Explain your method to reduce search times.

2. Show the worst case of search times < %, where n is the number
of blocks in Buffer Cache.

CSCI5550 Proj02: ISFS using FUSE 20

« The dirty blocks will be wrote back after un-mounting the
ISFS. There will still be a problem if the USB drive is
removed without proper procedure.

— To provide stronger consistency, invoke another thread to
write the dirty blocks to USB drive every 30 seconds.

— Be aware of the critical section!

By Ctrl+C

Advanced| Write W (Un—mount Mount Check
Grading RequestJ ISFS ISFS Consistency

Bonus Write W Wait for Plug out Mount Check
Grading RequestJ > 30 sec USB ISFS Consistency

CSCI5550 Proj02: ISFS using FUSE 21

* 1 block =512 bytes, 1 page = 4,096 bytes = 8 blocks
« Superblock =1 page

struct superblock{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

/2

}:

int
int
int
int
int
int

size ibmap; // 48
size dbmap; // 48
size inode; // 32

max size filename;

root inum; // = 0
num disk ptrs per

direct ptrs, 1 indire

* |Inode Bitmap = 48 pages
« Data Bitmap = 48 pages

— Every bit is used to specify the corresponding inode or data
block is in use or not. (O = not used, 1 - used)

- 48 (pages) X 4,096 (bytes) X 8 = 1,572,864 (bits)

CSCI5550 Proj02: ISFS using FUSE

pages
pages
bytes

// 12 bytes

_inode; // 4
ct ptr, 1 double indirect ptr

22

* Inode Table = 12,288 pages
— Each inode requires 8 integers = 32 bytes

_ 12,288 (pages)x4096 (bytes) _ 1,572,,864 (inodes)

32 (bytes)

struct inode struct{

int flag;

| // indicating the type of file of this node

| // (regular file or dir or something else)

int blocks; // how many blocks have been used

int used size; // how many bytes have been used

int links count; // # hard links to this file

int block[4]: // a set of inum points to data region

}:

« Data Region = 196,608 pages
- 196,608 (pages) % 8 (blocks) = 1,572,864 (blocks)

CSCI5550 Proj02: ISFS using FUSE 23

* The size of your Buffer Cache:
— 10,446 pages = 83,568 blocks = 42,786,816 bytes

 Total size required by your ISFS:

- 1 (superblock) + 48 X 2 (bitmaps) + 12,288 (inode table) +
196,608 (data region) = 208,993(pages) = 856,035,328 (bytes)

— The size of your testing USB drive should bigger than above
value.

« Please remember to Iinitialize the superblock & two
bitmaps when creating a new ISFS.

CSCI5550 Proj02: ISFS using FUSE 24

Submission

 Submission Deadline: =58pm-on-May-
11:59pm on May 19, 2020

* Please submit two things to CUHK Blackboard:

® The whole package of your project
v Including the source code(s), Makefile, etc.
v" Naming the package of your ISFS project after your student 1D

@ A short report
v" Showing how to run your project

v" Providing the screen shots of the results to prove that your ISFS
functions well.

« Discussion is allowed, but no plagiarism

— Your code(s) will be cross-checked
CSCI5550 Proj02: ISFS using FUSE 25

https://blackboard.cuhk.edu.hk/ultra/stream

 https://en.wikipedia.org/wiki/Page replacement algorithm

* https://www.quora.com/Why-does-O DIRECT-require-I-O-to-
be-512-byte-aligned

» https://en.wikipedia.org/wiki/Page cache
 http://man7.org/linux/man-pages/man3/posix _memalign.3.html
 http://man7.org/linux/man-pages/man2/pwrite.2.html

CSCI5550 Proj02: ISFS using FUSE 26

https://en.wikipedia.org/wiki/Page_replacement_algorithm
https://www.quora.com/Why-does-O_DIRECT-require-I-O-to-be-512-byte-aligned
https://en.wikipedia.org/wiki/Page_cache
http://man7.org/linux/man-pages/man3/posix_memalign.3.html
http://man7.org/linux/man-pages/man2/pwrite.2.html

