
CSCI5550 Advanced File and Storage Systems

Programming Assignment 02:

In-Storage File System (ISFS)

using FUSE

Outline

• ISFS Introduction

– From IMFS to ISFS

– Overall Structure of ISFS

• Direct I/O to USB drive

– Mount a USB drive in Virtual Machine

– Direct I/O to USB drive

• Buffer Cache

– A simple buffer cache design & architecture

– Eviction policy: LRU

– Buffer Cache Optimization

– Dirty Blocks Writeback

• Grading for Programming Assignment 2

– Basic Part (50%) + Advanced Part (50%)

– Bonus (10%)
CSCI5550 Proj02: ISFS using FUSE 2

From IMFS to ISFS

• For IMFS, all structures (Superblock, Bitmaps, Inode

Table, and Data Region) are stored in the memory.

• For ISFS, you are required to persist those structures

into the storage (e.g., a USB flash drive).

– Direct I/O will be used for data read/write.

– You will implement a Buffer Cache to reduce #reads/writes

to the storage.

CSCI5550 Proj02: ISFS using FUSE 3

Overall structure of ISFS

CSCI5550 Proj02: ISFS using FUSE 4

In-Storage Filesystem

VFS

Kernel Filesystem

Block Device

Storage

Page Cache

Buffer Cache
Userspace

Kernel

Direct I/O We use direct I/O to bypass the

kernel filesystem and the

page cache maintained by

kernel.

For ease of implementation, the

Buffer Cache is implemented in

the units of block size (512 B)

instead of page size (4 KB).

Direct

I/O

ISFS Layout

0x0

Outline

• ISFS Introduction

– From IMFS to ISFS

– Overall Structure of ISFS

• Direct I/O to USB drive

– Mount a USB drive in Virtual Machine

– Direct I/O to USB drive

• Buffer Cache

– A simple buffer cache design & architecture

– Eviction policy: LRU

– Buffer Cache Optimization

– Dirty Blocks Writeback

• Grading for Programming Assignment 2

– Basic Part (50%) + Advanced Part (50%)

– Bonus (10%)
CSCI5550 Proj02: ISFS using FUSE 5

Mount a USB drive in Virtual Machine

• Take VirtualBox as an example

• Use lsblk to list block devices

CSCI5550 Proj02: ISFS using FUSE 6

Direct I/O

• Direct I/O can support that file reads/writes directly from

the applications to the storage, bypassing the filesystem

cache.

– Redundant optimization if we have userspace buffer cache & OS

page cache!

• An application invokes direct I/O by opening a file with the

O_DIRECT flag. In our case, the file is the USB drive.

• When a file is opened with O_DIRECT:

– Assume the smallest unit of access called sector size.

– All I/O size must occur in the multiplies of sector size.

– The memory being read from or written to must also be sector-

byte aligned.

CSCI5550 Proj02: ISFS using FUSE 7

Direct I/O Example

CSCI5550 Proj02: ISFS using FUSE 8

1. Since we are using direct I/O to USB drive, the transferred

bytes and offset must be in the multiplies of 512 bytes &

allocated memory space must be aligned on a 512-byte.

2. Therefore, posix_memalign is required to allocate aligned

memory space for USB direct I/O.

3. The magic number is not always 512 bytes. It depends on

the sector size of the underlying block device.

Transferred bytes
Start reading from this byte offset

Provided I/O interface

CSCI5550 Proj02: ISFS using FUSE 9

Direct I/O Example w/ my_io.h

CSCI5550 Proj02: ISFS using FUSE 10

It is compulsory to call io_read (io_write) when accessing USB data.

You cannot call pread (pwrite) or modify my_io.h by yourself!

Outline

• ISFS Introduction

– From IMFS to ISFS

– Overall Structure of ISFS

• Direct I/O to USB drive

– Mount a USB drive in Virtual Machine

– Direct I/O to USB drive

• Buffer Cache

– A simple buffer cache design & architecture

– Eviction policy: LRU

– Buffer Cache Optimization

– Dirty Blocks Writeback

• Grading for Programming Assignment 2

– Basic Part (50%) + Advanced Part (50%)

– Bonus (10%)
CSCI5550 Proj02: ISFS using FUSE 11

Buffer Cache Design

• To minimize the frequency of disk access, the kernel keeps

a buffer to store the recently accessed files.

– This buffer is called the page cache.

– Page cache is a part of main memory which contains different

pages of data from storage.

• In our scenario, “Buffer Cache” works in similar idea as

page cache. However, we manage “Buffer Cache” in the

units of blocks (512B) for ease of implementation.

CSCI5550 Proj02: ISFS using FUSE 12

In-Storage Filesystem

Buffer Cache

Userspace

Kernel

Every requests from

ISFS will go to Buffer

Cache first.

Buffer Cache: Access Mechanism

• Every I/O request from ISFS will go to Buffer Cache first.

– If the requested data can be found in the Buffer Cache,

directly accessing the data in the Buffer Cache.

– If the requested data cannot be found:

• Choosing an empty block or Evicting a block from the

Buffer Cache;

• Then, using Direct I/O to read the requested block

and keeping the requested block in the Buffer Cache.

CSCI5550 Proj02: ISFS using FUSE 13

Block
List

8 13 -1… -1

Search all blocks to check the

requested block is present or not

Eviction Policy: LRU

• Least recently used (LRU): Discard the least

recently used block first.

CSCI5550 Proj02: ISFS using FUSE 14

Block
List

8 13 5… 20

Most recently used

Least

recently used

100

Buffer Cache Optimization

• The search time to find out a particular block could be

quite high if only a single LRU list is used.

– The worst case will be 𝑛 times, where 𝑛 is the number of

blocks in Buffer Cache.

• There are many ways to optimize the search time,

e.g., hash, tree, etc.

• How to optimize the search time of buffer cache while

maintaining the LRU eviction policy?

CSCI5550 Proj02: ISFS using FUSE 15

Dirty Block Writeback

• When we perform a write request with Buffer Cache:

– The write(s) won’t directly go to the storage.

– Instead, the block of memory is modified. The modified

block is called “dirty”.

• When a block of memory is to be replaced, we need to

check whether the block is dirty or not.

– Dirty Block Write the block back to the storage before being

replaced.

– Not Dirty Block Simply replace the block.

• What if the filesystem un-mounts?

– To maintain consistency, ISFS must write the dirty block(s) back

to the storage after un-mounting.

CSCI5550 Proj02: ISFS using FUSE 16

(Suggest) Data Structures

CSCI5550 Proj02: ISFS using FUSE 17

Block
List

8 13 5… 20

Most recently used

Least

recently used

Array of

blocks
…

Outline

• ISFS Introduction

– From IMFS to ISFS

– Overall Structure of ISFS

• Direct I/O to USB drive

– Mount a USB drive in Virtual Machine

– Direct I/O to USB drive

• Buffer Cache

– A simple buffer cache design & architecture

– Eviction policy: LRU

– Buffer Cache Optimization

– Dirty Blocks Writeback

• Grading for Programming Assignment 2

– Basic Part (50%) + Advanced Part (50%)

– Bonus (10%)
CSCI5550 Proj02: ISFS using FUSE 18

Grading – Basic Part (50%)

• Persisting both metadata and file data into a USB drive.

– [H] Using the provided I/O interface (my_io.h)

– [H] The file data can still be accessed after re-mounting ISFS

– [25%] The support of cd, ls, mkdir, touch, echo “string” >> file,

cat, rmdir, rm

– [25%] The support of “big file” and “big directory”

To test the support of “big file”, a “big file” will be copied from

kernel FS to ISFS and then copied back.

To test the support of “big directory”, a shell script will be used

to create a large number of files & directories.

• Note1: Fail to support [H] requirements will get 0 points in this part.

• Note2: Modifying the code in my_io.h is prohibited.

• Note3: Don’t need to support hard link & soft link in the ISFS.

CSCI5550 Proj02: ISFS using FUSE 19

Grading – Advanced Part (50%)

• You are required to build a Buffer Cache to minimize

the number of accesses to the storage (USB drive).

– [35%] Correctness of Buffer Cache:

1. Implement LRU eviction policy

2. Consistency maintenance: dirty blocks writeback when un-

mounting (Ctrl+C) ISFS

3. USB access minimization: show the numbers of reads/writes are

reduced after using Buffer Cache.

– [15%] Buffer Cache Optimization:

1. Explain your method to reduce search times.

2. Show the worst case of search times ≤
𝑛

4
, where n is the number

of blocks in Buffer Cache.

CSCI5550 Proj02: ISFS using FUSE 20

Grading – Bonus (10%)

• The dirty blocks will be wrote back after un-mounting the

ISFS. There will still be a problem if the USB drive is

removed without proper procedure.

– To provide stronger consistency, invoke another thread to

write the dirty blocks to USB drive every 30 seconds.

– Be aware of the critical section!

CSCI5550 Proj02: ISFS using FUSE 21

Check
Consistency

Un-mount
ISFS

Write
Request

Mount
ISFS

Check
Consistency

Plug out
USB

Write
Request

Mount
ISFS

Advanced

Grading

Bonus

Grading

Wait for

> 30 sec

By Ctrl+C

Parameter Setting

• 1 block = 512 bytes, 1 page = 4,096 bytes = 8 blocks

• Superblock = 1 page

• Inode Bitmap = 48 pages

• Data Bitmap = 48 pages

– Every bit is used to specify the corresponding inode or data

block is in use or not. (0 not used, 1 used)

– 48 𝑝𝑎𝑔𝑒𝑠 × 4,096 𝑏𝑦𝑡𝑒𝑠 × 8 = 1,572,864 (𝑏𝑖𝑡𝑠)

CSCI5550 Proj02: ISFS using FUSE 22

Parameter Setting (Conti)

• Inode Table = 12,288 pages

– Each inode requires 8 integers = 32 bytes

–
12,288 𝑝𝑎𝑔𝑒𝑠 ×4096 𝑏𝑦𝑡𝑒𝑠

32 (𝑏𝑦𝑡𝑒𝑠)
= 1,572, , 864 (𝑖𝑛𝑜𝑑𝑒𝑠)

• Data Region = 196,608 pages

– 196,608 𝑝𝑎𝑔𝑒𝑠 × 8 𝑏𝑙𝑜𝑐𝑘𝑠 = 1,572,864 (𝑏𝑙𝑜𝑐𝑘𝑠)

CSCI5550 Proj02: ISFS using FUSE 23

Parameter Setting (Conti)

• The size of your Buffer Cache:

– 10,446 pages = 83,568 blocks = 42,786,816 bytes

• Total size required by your ISFS:
– 1 𝑠𝑢𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘 + 48 × 2 𝑏𝑖𝑡𝑚𝑎𝑝𝑠 + 12,288 𝑖𝑛𝑜𝑑𝑒 𝑡𝑎𝑏𝑙𝑒 +
196,608 𝑑𝑎𝑡𝑎 𝑟𝑒𝑔𝑖𝑜𝑛 = 208,993 𝑝𝑎𝑔𝑒𝑠 = 856,035,328 (𝑏𝑦𝑡𝑒𝑠)

– The size of your testing USB drive should bigger than above

value.

• Please remember to initialize the superblock & two

bitmaps when creating a new ISFS.

CSCI5550 Proj02: ISFS using FUSE 24

Submission

• Submission Deadline: 11:59pm on May 12, 2020

11:59pm on May 19, 2020

• Please submit two things to CUHK Blackboard:

 The whole package of your project

 Including the source code(s), Makefile, etc.

 Naming the package of your ISFS project after your student ID

 A short report

 Showing how to run your project

 Providing the screen shots of the results to prove that your ISFS

functions well.

• Discussion is allowed, but no plagiarism

– Your code(s) will be cross-checked

CSCI5550 Proj02: ISFS using FUSE 25

https://blackboard.cuhk.edu.hk/ultra/stream

Reference

• https://en.wikipedia.org/wiki/Page_replacement_algorithm

• https://www.quora.com/Why-does-O_DIRECT-require-I-O-to-

be-512-byte-aligned

• https://en.wikipedia.org/wiki/Page_cache

• http://man7.org/linux/man-pages/man3/posix_memalign.3.html

• http://man7.org/linux/man-pages/man2/pwrite.2.html

CSCI5550 Proj02: ISFS using FUSE 26

https://en.wikipedia.org/wiki/Page_replacement_algorithm
https://www.quora.com/Why-does-O_DIRECT-require-I-O-to-be-512-byte-aligned
https://en.wikipedia.org/wiki/Page_cache
http://man7.org/linux/man-pages/man3/posix_memalign.3.html
http://man7.org/linux/man-pages/man2/pwrite.2.html

