
CSCI5550 Advanced File and Storage Systems

Programming Assignment 02: 

In-Storage File System (ISFS) 

using FUSE
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From IMFS to ISFS

• For IMFS, all structures (Superblock, Bitmaps, Inode 

Table, and Data Region) are stored in the memory.

• For ISFS, you are required to persist those structures 

into the storage (e.g., a USB flash drive).

– Direct I/O will be used for data read/write.

– You will implement a Buffer Cache to reduce #reads/writes 

to the storage.
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Overall structure of ISFS
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Mount a USB drive in Virtual Machine

• Take VirtualBox as an example

• Use lsblk to list block devices
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Direct I/O

• Direct I/O can support that file reads/writes directly from 

the applications to the storage, bypassing the filesystem 

cache.

– Redundant optimization if we have userspace buffer cache & OS 

page cache!

• An application invokes direct I/O by opening a file with the 

O_DIRECT flag. In our case, the file is the USB drive.

• When a file is opened with O_DIRECT: 

– Assume the smallest unit of access called sector size.

– All I/O size must occur in the multiplies of sector size. 

– The memory being read from or written to must also be sector-

byte aligned.
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Direct I/O Example
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1. Since we are using direct I/O to USB drive, the transferred 

bytes and offset must be in the multiplies of 512 bytes & 

allocated memory space must be aligned on a 512-byte.

2. Therefore, posix_memalign is required to allocate aligned 

memory space for USB direct I/O.

3. The magic number is not always 512 bytes. It depends on 

the sector size of the underlying block device.

Transferred bytes
Start reading from this byte offset



Provided I/O interface
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Direct I/O Example w/ my_io.h
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It is compulsory to call io_read (io_write) when accessing USB data.

You cannot call pread (pwrite) or modify my_io.h by yourself!
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Buffer Cache Design

• To minimize the frequency of disk access, the kernel keeps 

a buffer to store the recently accessed files. 

– This buffer is called the page cache.

– Page cache is a part of main memory which contains different 

pages of data from storage.

• In our scenario, “Buffer Cache” works in similar idea as 

page cache. However, we manage “Buffer Cache” in the 

units of blocks (512B) for ease of implementation.
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Buffer Cache: Access Mechanism

• Every I/O request from ISFS will go to Buffer Cache first.

– If the requested data can be found in the Buffer Cache, 

directly accessing the data in the Buffer Cache.

– If the requested data cannot be found:

•  Choosing an empty block or Evicting a block from the 

Buffer Cache; 

•  Then, using Direct I/O to read the requested block 

and keeping the requested block in the Buffer Cache.
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Eviction Policy: LRU

• Least recently used (LRU): Discard the least 

recently used block first.
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Buffer Cache Optimization

• The search time to find out a particular block could be 

quite high if only a single LRU list is used.

– The worst case will be 𝑛 times, where 𝑛 is the number of 

blocks in Buffer Cache. 

• There are many ways to optimize the search time, 

e.g., hash, tree, etc. 

• How to optimize the search time of buffer cache while 

maintaining the LRU eviction policy?
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Dirty Block Writeback

• When we perform a write request with Buffer Cache:

– The write(s) won’t directly go to the storage. 

– Instead, the block of memory is modified. The modified 

block is called “dirty”.

• When a block of memory is to be replaced, we need to 

check whether the block is dirty or not. 

– Dirty Block  Write the block back to the storage before being 

replaced.

– Not Dirty Block  Simply replace the block.

• What if the filesystem un-mounts?

– To maintain consistency, ISFS must write the dirty block(s) back 

to the storage after un-mounting.
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(Suggest) Data Structures
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Grading – Basic Part (50%)

• Persisting both metadata and file data into a USB drive. 

– [H] Using the provided I/O interface (my_io.h)

– [H] The file data can still be accessed after re-mounting ISFS

– [25%] The support of cd, ls, mkdir, touch, echo “string” >> file, 

cat, rmdir, rm

– [25%] The support of “big file” and “big directory”

To test the support of “big file”, a “big file” will be copied from 

kernel FS to ISFS and then copied back.

To test the support of “big directory”, a shell script will be used 

to create a large number of files & directories.

• Note1: Fail to support [H] requirements will get 0 points in this part.

• Note2: Modifying the code in my_io.h is prohibited. 

• Note3: Don’t need to support hard link & soft link in the ISFS.
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Grading – Advanced Part (50%)

• You are required to build a Buffer Cache to minimize 

the number of accesses to the storage (USB drive).

– [35%] Correctness of Buffer Cache: 

1. Implement LRU eviction policy

2. Consistency maintenance: dirty blocks writeback when un-

mounting (Ctrl+C) ISFS

3. USB access minimization: show the numbers of reads/writes are 

reduced after using Buffer Cache.

– [15%] Buffer Cache Optimization:

1. Explain your method to reduce search times.

2. Show the worst case of  search times ≤
𝑛

4
, where n is the number 

of blocks in Buffer Cache.
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Grading – Bonus (10%)

• The dirty blocks will be wrote back after un-mounting the 

ISFS. There will still be a problem if the USB drive is 

removed without proper procedure.

– To provide stronger consistency, invoke another thread to 

write the dirty blocks to USB drive every 30 seconds.

– Be aware of the critical section!
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Parameter Setting

• 1 block = 512 bytes, 1 page = 4,096 bytes = 8 blocks

• Superblock = 1 page

• Inode Bitmap = 48 pages

• Data Bitmap = 48 pages

– Every bit is used to specify the corresponding inode or data 

block is in use or not. (0  not used, 1  used)

– 48 𝑝𝑎𝑔𝑒𝑠 × 4,096 𝑏𝑦𝑡𝑒𝑠 × 8 = 1,572,864 (𝑏𝑖𝑡𝑠)
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Parameter Setting (Conti)

• Inode Table = 12,288 pages

– Each inode requires 8 integers = 32 bytes

–
12,288 𝑝𝑎𝑔𝑒𝑠 ×4096 𝑏𝑦𝑡𝑒𝑠

32 (𝑏𝑦𝑡𝑒𝑠)
= 1,572, , 864 (𝑖𝑛𝑜𝑑𝑒𝑠)

• Data Region = 196,608 pages

– 196,608 𝑝𝑎𝑔𝑒𝑠 × 8 𝑏𝑙𝑜𝑐𝑘𝑠 = 1,572,864 (𝑏𝑙𝑜𝑐𝑘𝑠)
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Parameter Setting (Conti)

• The size of your Buffer Cache: 

– 10,446 pages = 83,568 blocks = 42,786,816 bytes

• Total size required by your ISFS:
– 1 𝑠𝑢𝑝𝑒𝑟𝑏𝑙𝑜𝑐𝑘 + 48 × 2 𝑏𝑖𝑡𝑚𝑎𝑝𝑠 + 12,288 𝑖𝑛𝑜𝑑𝑒 𝑡𝑎𝑏𝑙𝑒 +
196,608 𝑑𝑎𝑡𝑎 𝑟𝑒𝑔𝑖𝑜𝑛 = 208,993 𝑝𝑎𝑔𝑒𝑠 = 856,035,328 (𝑏𝑦𝑡𝑒𝑠)

– The size of your testing USB drive should bigger than above 

value.

• Please remember to initialize the superblock & two 

bitmaps when creating a new ISFS.
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Submission

• Submission Deadline: 11:59pm on May 12, 2020 

11:59pm on May 19, 2020

• Please submit two things to CUHK Blackboard:

 The whole package of your project

 Including the source code(s), Makefile, etc.

 Naming the package of your ISFS project after your student ID

 A short report

 Showing how to run your project

 Providing the screen shots of the results to prove that your ISFS 

functions well.

• Discussion is allowed, but no plagiarism

– Your code(s) will be cross-checked

CSCI5550 Proj02: ISFS using FUSE 25

https://blackboard.cuhk.edu.hk/ultra/stream
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